Pantech.AI

How to Interface Magnetometer HMC5883L with Arduino UNO

Overview of Magnetometer

HMC5883L Magnetometer Module

The HMC5883L magnetometer measures both the direction and strength of the Earth’s magnetic field, making it ideal for low-cost compassing and magnetometry applications.

It detects magnetic field values along the X, Y, and Z axes, with a range from milli-gauss up to 8 gauss.

This sensor can serve as a compass to determine direction or to track the heading of a device.

The HMC5883L communicates with a microcontroller via the I2C protocol. Magnetic field values along the X, Y, and Z axes can be obtained by reading specific register addresses using I2C.

For more details on the HMC5883L magnetometer and its usage, refer to the HMC5883L Magnetometer Module topic in the sensors and modules section.

Connection Diagram of HMC5883L Magnetometer With Arduino UNO

Interfacing HMC5883L Magnetometer Module With Arduino UNO

Read HMC5883L Magnetometer using Arduino UNO

Finding the heading direction using a magnetometer module can be achieved as follows:

We’ll use James Sleeman’s HMC5883L library from GitHub.

https://github.com/sleemanj/HMC5883L_Simple/archive/master.zip

After downloading, extract the library and add it to the Arduino IDE’s libraries folder.

For instructions on adding custom libraries and using example sketches, refer to Adding Library to Arduino IDE in the Basics section.

Once the library is added, open the Arduino IDE and load the example sketch for the compass from the HMC5883L library.

Note that this library does not compensate for tilt or interference from nearby ferrous materials. For compensation, refer to the attached application notes.

Also, the example sketch includes a declination angle for the author’s location. Be sure to adjust this value to match the declination angle for your location.

HMC5883L Magnetometer Code for Arduino UNO

/*
 * 
 * Compass.ino - Example sketch for reading a heading from an HMC5883L triple axis magnetometer.
 * 
 * GY-273 Compass Module  ->  Arduino
 * VCC  -> VCC  (See Note Below)
 * GND  -> GND
 * SCL  -> A5/SCL, (Use Pin 21 on the Arduino Mega)
 * SDA  -> A4/SDA, (Use Pin 20 on the Arduino Mega)
 * DRDY -> Not Connected (in this example)
 * 
 * Voltage Note
 * ~~~~~~~~~~~~  
 * The GY-273 Board has a 3v3 Regulator on it, and the SDA/SCL are pulled up to that so it is OK to 
 * use with 5v Arduino's.
 * 
 * If you are using any other breakout, or the raw IC, you need to be using 3v3 to supply and signal!
 * 
 * Datasheet: http://goo.gl/w1criV
 * 
 * Copyright (C) 2014 James Sleeman
 * 
 * Permission is hereby granted, free of charge, to any person obtaining a 
 * copy of this software and associated documentation files (the "Software"), 
 * to deal in the Software without restriction, including without limitation 
 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 
 * and/or sell copies of the Software, and to permit persons to whom the 
 * Software is furnished to do so, subject to the following conditions:
 * 
 * The above copyright notice and this permission notice shall be included in 
 * all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 
 * THE SOFTWARE.
 * 
 * @author James Sleeman, http://sparks.gogo.co.nz/
 * @license MIT License
 * 
 */

#include <Arduino.h>
#include <Wire.h>
#include <HMC5883L_Simple.h>

// Create a compass
HMC5883L_Simple Compass;

void setup()
{
  Serial.begin(9600);
  Wire.begin();
    
  // Magnetic Declination is the correction applied according to your present location
  // in order to get True North from Magnetic North, it varies from place to place.
  // 
  // The declination for your area can be obtained from http://www.magnetic-declination.com/
  // Take the "Magnetic Declination" line that it gives you in the information, 
  //
  // Examples:
  //   Christchurch, 23° 35' EAST
  //   Wellington  , 22° 14' EAST
  //   Dunedin     , 25° 8'  EAST
  //   Auckland    , 19° 30' EAST
  //    
  Compass.SetDeclination(-0, 23, 'W');  
  
  // The device can operate in SINGLE (default) or CONTINUOUS mode
  //   SINGLE simply means that it takes a reading when you request one
  //   CONTINUOUS means that it is always taking readings
  // for most purposes, SINGLE is what you want.
  Compass.SetSamplingMode(COMPASS_SINGLE);
  
  // The scale can be adjusted to one of several levels, you can probably leave it at the default.
  // Essentially this controls how sensitive the device is.
  //   Options are 088, 130 (default), 190, 250, 400, 470, 560, 810
  // Specify the option as COMPASS_SCALE_xxx
  // Lower values are more sensitive, higher values are less sensitive.
  // The default is probably just fine, it works for me.  If it seems very noisy
  // (jumping around), incrase the scale to a higher one.
  Compass.SetScale(COMPASS_SCALE_130);
  
  // The compass has 3 axes, but two of them must be close to parallel to the earth's surface to read it, 
  // (we do not compensate for tilt, that's a complicated thing) - just like a real compass has a floating 
  // needle you can imagine the digital compass does too.
  //
  // To allow you to mount the compass in different ways you can specify the orientation:
  //   COMPASS_HORIZONTAL_X_NORTH (default), the compass is oriented horizontally, top-side up. when pointing North the X silkscreen arrow will point North
  //   COMPASS_HORIZONTAL_Y_NORTH, top-side up, Y is the needle,when pointing North the Y silkscreen arrow will point North
  //   COMPASS_VERTICAL_X_EAST,    vertically mounted (tall) looking at the top side, when facing North the X silkscreen arrow will point East
  //   COMPASS_VERTICAL_Y_WEST,    vertically mounted (wide) looking at the top side, when facing North the Y silkscreen arrow will point West  
  Compass.SetOrientation(COMPASS_HORIZONTAL_X_NORTH);
  
}

// Our main program loop.
void loop()
{
   float heading = Compass.GetHeadingDegrees();
   
   Serial.print("Heading: \t");
   Serial.println( heading );   
   delay(1000);
}
 

Leave a Comment

Your email address will not be published. Required fields are marked *